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Controlling the unstable steady state in a multimode laser
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A method to control unstable steady states in high-dimensional systems is described and imple-
mented on a model of a multimode laser with an intracavity doubling crystal. Our control method
uses the duration of time for which feedback control is applied as an addition parameter. This is
necessary to account for control activated transients in a high-dimensional system.

PACS number(s): 05.45.+b

The use of a system’s natural dynamics to force the
system into a desired unstable state and thus achieve
control offers an advantage over classical control meth-
ods. By applying small amplitude feedback to a readily
available system parameter so that the system evolves to-
wards the desired state, difficult or costly modifications
to the system that alter its dynamics are unnecessary.
This idea is apparent in a method to stabilize periodic
orbits originated by Ott, Grebogi, and York [1]. They
used linear control theory and feedback to an available
system parameter to direct the system to the stable man-
ifold of the unstable state. Ideally, control could then
be turned off as the natural dynamics along the stable
manifold continued to contract the system towards the
desired state. Additionally, information about the local
dynamics of the desired unstable state that is required
to formulate the control law could be obtained by re-
constructing the system’s phase space from experimental
data [2]. The control method is said to be “model in-
dependent” as a detailed model of the system does not
have to be constructed (see Ref. [3] for a review).

A limitation of the Ott-Grebogi-Yorke control method
occurs in high-dimensional systems where control pertur-
bations induce transients off the unstable manifold that
hinder the effectiveness of the method. It is interesting
then that a related scalar control method, called occa-
sional proportional feedback (OPF) [4], has been suc-
cessful in controlling the steady state and periodic orbits
of a multimode laser, which is a high-dimensional system
[5,6]. However, the OPF feedback method also requires
the careful tuning of additional experimental parameters.
In particular, the laser control experiment requires ad-
justment of control perturbation pulse width. This obser-
vation motivated us to develop a control method that ex-
plicitly uses the duration of time the control signal is ap-
plied, called control duration, as an additional feedback
parameter to control steady states in high-dimensional
systems [7]. An important difference between OPF and
our method is that while in the case of OPF the control
pulse width is fixed, we use the pulse width, or as we
call it, the control duration, as an additional feedback
parameter.

After briefly reviewing the theory of our control
method [7], we describe its numerical application to the
multimode laser system used in the OPF control experi-
ments. The unstable manifold is a focus, while the stable
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manifold is four dimensional with two pairs of complex-
conjugate eigenvalues. Using the control duration as an
additional parameter compensates for control activated
transients that occur on the stable manifold.

Consider the general system

& ¥, P), M
where z is an n-dimensional state variable, P is a scalar
parameter of the system and will be used as the con-
trol variable, and F is a nonlinear vector function of the
state and control variables. We assume the existence of
a steady state solution given by (z(P),P). We wish to
establish control about a particular steady state when
P = P and z(P) = z. To this end we approximate the
dynamics about this steady state point as

%:A-qu—Bp, (2a)
B . __ dF(z, P)
A = DZF(Z, P), B = T, (2b)
where x and p are small deviations (x = z — z <

landp = P — P < 1) from the steady state val-
ues z and P, respectively. We assume that there is
a single complex-conjugate pair of unstable eigenvalues
ou(p) £ iw(p), where o, > 0 and do,/dp # 0. This im-
plies the existence of a Hopf bifurcation for some lower
value of the parameter P. The only restriction on the
additional eigenvalues is that they have a negative real
part. For model-independent control, the parameters of
(2a), i.e., A and B, can be determined by embedding the
flow of the physical system into an artificial phase space
[2]-
Provided that A is nonsingular, i.e., P is not a bifur-
cation point, then the general solution to (2a) is

x(t) = eAt . [x(0) + A™'-Bp] — A ' - Bp. (3)

The n X n matrix A can be block diagonalized as A =
S-A-S71, where S is composed of the right eigenvectors
e;,i=1,...,n,and S™! is composed of the left eigenvec-
tors f;,7 = 1,...,n. We designate the right eigenvectors
associated with the unstable complex-conjugate pair of
eigenvalues as e; and e, (similarly, f; and f; are the cor-
responding left eigenvectors).

The goal of the control method is that given some ini-
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tial error x(0), we determine the parameter variation p
and the control duration T. = (2mq)/w (¢ is the un-
known) such that x(¢) — 0 as t — oo. This is ac-
complished by forcing the system state to lie entirely
within the stable manifold at the end of the control pe-
riod, specifically,

x(T.) =S -k where k = (0,0, ks, ...,kp). (4)

Substituting t = T, into (3), we obtain n equations for
the n unknowns p,q, ks, ...,k,. We are concerned only
with the first two equations that determine p and ¢q. Once
these are determined the remaining equations determine
only the k;. We allow these to be arbitrary because they
specify only the location of the system in the stable man-
ifold. Once the dynamics is on the stable manifold, the
system will then evolve towards the steady state.
Solving the first two equations of (3) for p, we obtain

—A(g)f1 - x(0)

P=4 [A(g) — cos (2mq)] + da sin (2mq)’ (5a)

Ag) = ¥/, (5b)
_ (qua —-Ldfé) '13

b= (50
0Uf1*+'0ufé) -B

d, = ——Uﬁ+w2 (5d)

and the following transcendental equation for g:

[A(g) — cos (2mq)](d1fz — daf1)

+sin (21q)(d1fy + dafz) - x(0) = 0. (6)

The solution to (6) is multivalued and we take ¢ € (0,1)
so that control is applied for less than one natural period
of the system.

We reiterate that the use of the control duration as
a second parameter compensates for the deviations off
the unstable manifold into the stable subspace due to
the control perturbation. It is not used to formulate a
“multiparameter scheme” [8] due to the two-dimensional
unstable manifold. If we had considered a simple two-
dimensional system that had undergone a Hopf bifur-
cation, the two-dimensional unstable manifold or focus
would be controllable using only amplitude perturbations
of p [7].

To control the system we have the following algorithm.
Given x(0), (6) is solved numerically to determine gq.
Next, p is determined using (5a). Using these values,
x(T.) will lie in the stable manifold and eventually decay
to 0. In a real system, noise and small errors will require
the system to be monitored and control reapplied.

We now apply our method to the control of the un-
stable steady state of a multimode Nd:YAG laser (where
YAG denotes yttrium aluminum garnet) with an intra-
cavity potassium titanyl phosphate (KTP) frequency-
doubling crystal. We consider the case of three couple
modes with each being modeled by rate equations for
the mode intensity I; and the gain G; [9]:

dl;
Tcd_tJ =1I; (Gj —a—e(gl; +2 Z :“jka))’ (7a)

Py
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dG;
Tf#ZW_Gj<1+Ij+ﬁZIk>' (7b)

k#j

In these equations, 7, is the cavity round-trip time (0.2
ns), 75 is the fluorescence lifetime (240 us), and a is
the nondimensional loss (0.01). The geometrical factor g
(0.01) depends on the orientation of the YAG and KTP
crystals. Each mode can be polarized in either of two
orthogonal directions so that uj, = g when modes j and
k are of the same polarization and pjx = 1 —g when they
are in different polarizations; our simulations consider
the case when modes 1 and 2 are in the same polarization
and both are orthogonal to mode 3. The conversion effi-
ciency of infrared light to frequency-doubled green light
is indicated by the parameter ¢ (5.0 x107%), while 3 is
the cross saturation parameter related to the competition
among the different modes (0.6). Finally, v is the small
signal gain, which is related to the pump intensity, and
will serve as the control parameter.

We chose to control the unstable steady state when
v = 0.5 by adding small perturbations p for a cal-
culated duration of time T,.(g) as determined in Egs.
(5a) and (6). The parameters required to determine
p and ¢ are calculated using Egs. (7a) and (7b), but
could be made model independent by using an embedded
times series from experimental data. The error vector
x = (I1,G4,...) — (I1,G4,...) is measured at a specified
sampling rate and the proper correction to p and q is de-
termined. Additionally, we specify that the error vector
be at least |x| > 1.07® before control is activated; we
call this the control criteria. This was done only so the
growth in the error could be seen in the figures and is
not necessary, in general.

Figure 1 shows the controlled steady state for approx-
imately 40 ms, during which time there are 200 con-
trol pulses. The control is then turned off so that the
system evolves to antiphase oscillations (also known as
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FIG. 1. The laser is controlled for approximately 40 ms at
which time the feedback control is turned off and the sys-
tem evolves to antiphase oscillations. The total intensity out-
put of the laser is the sum of the individual mode intensities
Liotal = In + I2 + Is.
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FIG. 2. Left uncontrolled, any deviations from the unsta-
ble steady state evolve to antiphase oscillations ordered mode
1,3,2. “Antiphase” refers to the fact that each oscillator is
phase shifted by 1/3 of the full period from its neighbor.
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splay-phase oscillations) [9] characteristic of the multi-
mode laser (see Fig. 2).

The action of a single control pulse in v can be seen
in Fig. 3. The control pulse at 1.63 ms directs the sys-
tem onto the stable manifold of the unstable steady state
indicated by the decaying oscillations that follow. Small
errors or noise are amplified by the unstable dynamics so
that there is slow growth in the oscillations away from the
steady state. Left uncontrolled the system would evolve
to the antiphase oscillations shown in Fig. 2. However,
upon resampling of the system at approximately 1.84 ms,
control was reactivated to bring the system back to the
unstable steady state.

Note that the pulse width of the two major control cor-
rections is visibly different; the correct control duration,
or g, was determined using (6). During the simulation
shown in Fig. 1, it was found that ¢ € (0.997,0.014), the
mean value was § = 0.384, and the standard deviation
was 04 = 0.263. The fact that there is a low variance
in g suggests a possible contributor to the success of the
experiments using OPF when the control duration was
held fixed.

We have also simulated the system with ¢ fixed to the
mean value ¢ = . Control is less efficient in that the
system is not as precisely placed on the stable manifold so
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FIG. 3. Detailed view of the control action on the laser.
Variations in the parameter g result in control pulses of dif-
ferent duration.

that control must occur much more often. Alternatively,
we conjecture that control may be established by fixing
the p and applying feedback only to the control duration
g. This may be advantageous in certain applications.

After the control pulses the initial error of the decay-
ing oscillations is larger than the control criteria. The
present control method is optimal in the sense of plac-
ing the system on the stable manifold, but is unable to
dictate where on the stable manifold. [Notice in (4) that
the k; cannot be specified and are arbitrary.] It is a fu-
ture challenge to optimize the control so that the size of
the error fluctuations is minimized. This would require a
trade-off between the accuracy of placement on the sta-
ble manifold and the distance from the unstable steady
state.

Finally, if the system is sampled during the oscillations
that follow a control pulse, control should be reactivated.
In Fig. 1 this is prevented by disallowing a control pulse
if the system is on the stable manifold. (This was done so
that the statistics on ¢ would be determined only from a
correction when the system is on the unstable manifold.)
However, the control method is successful even without
this restriction. When the system is on, or very close to,
the stable manifold and orthogonal to the unstable mani-
fold, the control pulse is very small. Specifically, the error
vector is perpendicular to the unstable left eigenvectors
(x-f; = 0,i=1,2) so that p =~ 0.
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